Melting curve of SiO2 at multimegabar pressures: implications for gas giants and super-Earths
نویسندگان
چکیده
Ultrahigh-pressure phase boundary between solid and liquid SiO2 is still quite unclear. Here we present predictions of silica melting curve for the multimegabar pressure regime, as obtained from first principles molecular dynamics simulations. We calculate the melting temperatures from three high pressure phases of silica (pyrite-, cotunnite-, and Fe2P-type SiO2) at different pressures using the Z method. The computed melting curve is found to rise abruptly around 330 GPa, an increase not previously reported by any melting simulations. This is in close agreement with recent experiments reporting the α-PbO2-pyrite transition around this pressure. The predicted phase diagram indicates that silica could be one of the dominant components of the rocky cores of gas giants, as it remains solid at the core of our Solar System's gas giants. These results are also relevant to model the interior structure and evolution of massive super-Earths.
منابع مشابه
Prediction of a hexagonal SiO2 phase affecting stabilities of MgSiO3 and CaSiO3 at multimegabar pressures.
Ultrahigh-pressure phase relationship of SiO(2) silica in multimegabar pressure condition is still quite unclear. Here, we report a theoretical prediction on a previously uncharacterized stable structure of silica with an unexpected hexagonal Fe(2)P-type form. This phase, more stable than the cotunnite-type structure, a previously postulated postpyrite phase, was discovered to stabilize at 640 ...
متن کاملMelting in super-earths.
We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures charac...
متن کاملRapid Formation of Super-Earths around M Dwarf Stars
While the recent microlensing discoveries of super-Earths orbiting two M dwarf stars have been taken as support for the core accretion mechanism of giant planet formation, we show here that these planets could also have been formed by the competing mechanism of disk instability, coupled with photoevaporative loss of their gaseous envelopes by a strong external source of UV radiation, i.e., an O...
متن کاملTwo-stage dissociation in MgSiO3 post-perovskite
a r t i c l e i n f o Keywords: pressure-induced phase transition postperovskite super-Earth 10 solar giants first principles The fate of MgSiO 3 post-perovskite under TPa pressures is key information for understanding and modeling interiors of super-Earths-type exoplanets and solar giants' cores. Here, we report a dissociation of MgSiO 3 post-perovskite into CsCl-type MgO and P2 1 /c-type MgSi...
متن کاملDissociation of MgSiO3 in the cores of gas giants and terrestrial exoplanets.
CaIrO3-type MgSiO3 is the planet-forming silicate stable at pressures and temperatures beyond those of Earth's core-mantle boundary. First-principles quasiharmonic free-energy computations show that this mineral should dissociate into CsCl-type MgO cotunnite-type SiO2 at pressures and temperatures expected to occur in the cores of the gas giants + and in terrestrial exoplanets. At approximately...
متن کامل